
 

 

 

  

Abstract— This paper presents a new method for mapping 

multi5floor buildings. The method combines laser range sensor 

for metric mapping and barometric pressure sensor for 

detecting floor transitions and map segmentation.  We exploit 

the fact that the barometric pressure is a function of the 

elevation, and it varies between different floors.  The method is 

tested with a real robot in a typical indoor environment, and 

the results show that physically consistent multi5floor 

representations are achievable.  

I. INTRODUCTION 

The problem of simultaneous localization and mapping is 

one of the most researched topics in robotics. Many methods 

are proposed to solve the SLAM problem, and it is generally 

accepted that the problem of mapping indoor environments 

is well addressed. However, a vast majority of the stateHofH

theHart methods do not incorporate global constraints, and 

they only address the problem in 2D. Therefore, mapping of 

individual floors of a building is considered to be solved, but 

providing a globally consistent and wellHaligned map of the 

whole building remains as an open question. 

In this paper, we aim to tackle this problem using a sensor 

fusion approach. We exploit the properties of barometric 

pressure to detect floor transitions of the robot during 

exploration, and to situate individual floors of the building 

onto a global coordinate frame. 

The major contribution of this paper is a simple, 

inexpensive and easyHtoHimplement approach for generating 

globally consistent maps of multiHfloor buildings. Resulting 

representations can be called as 2.1Hdimensional; as the 

individual floor maps are 2D occupancyHgrids and floor 

elevations are represented as barometric pressures, which are 

proportional to actual elevation differences between floors.   

Our method is built on top of publicly available, and 

openHsource hardware and software frameworks, so that it 

can be easily implemented on existing systems. We 

implemented our method into a mobile robot system and 

evaluated the method in a typical multiHfloor building. 

Results of the experiment prove that the method is capable 

of generating consistent maps for multiHfloor buildings. 

 
Manuscript received March 28, 2011.  

Ali Gurcan Ozkil and Steen Dawids are with the Technical University of 

Denmark, Copenhagen, Denmark. Zhun Fan (Correspoing author) was with 

the Technical University of Denmark; and he is now with Tongji 

University, China. Jens Klæstrup Kristensen and Kim Hardam Christensen 

are with Force Technology, Denmark. Jizhong Xiao is with the City College 

of the City University of New York, USA Emails: aliozkil@gmail.com, 

zfan@tongji.edu.cn, jxiao@ccny.cuny.edu, sdaw@man.dtu.dk, 

jek@force.dk, kmc@force.dk,  

 

II. RELATED WORK 

Mapping of indoor environments is a wellHstudied 

problem; several solutions exist for 2D maps and their 

extension to 3D are emerging. According to Busckha [1], 

robotic mapping methods fall into 5 categories: metric maps 

[2], topological maps [3], sensorHlevel maps [4], appearanceH

based maps [5]  and semantic maps [6].  In this paper, we 

focus on (metric) occupancyHgrid maps, which is one of the 

most commonly used type of maps in robotics.  

Majority of occupancyHgrid mapping techniques utilize 

probabilistic approaches to model robot motion and to 

represent sensor uncertainties, such as derivations of Kalman 

filters ([7], [8]), particle filters [9] and graphHbased 

optimization methods [10]. 

 

 
 

Figure 1, Map of a multiHfloor building, as the result of 2DHSLAM: Six 

floors of the same building are superimposed onto a single plane. The 

dataset is recorded by a single robot exploring the whole building. The main 

goal of this work is to segment the map using variations of barometric 

pressure among different floors.  

 

Despite the number of solutions for 2D mapping, only a 

few methods deal with mapping of multiHfloor buildings. In 

[11], a visualHodometry based approach is proposed to derive 

the alignments of floors. In this approach, however, the 

floors should be mapped sequentially; and salient visual 

features are required during floor transitions.  

SLAM using multiple robots has similar aspects to the 

problem of mapping multiHfloor buildings. In [12], a mapH
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merging approach is presented to obtain a global map from 

the individual maps of robots, provided that robots meet 

with each other during their mission. In [13] this approach is 

extended in a way that the robots localize each other in their 

respective maps and create constraints that are used to merge 

the maps via global localization. 

A recently proposed a method by Karg et.al. [14] is one of 

the very few methods that directly address the multiCfloor 

mapping problem. Similar to [13], they use constraints that 

are derived from global localization to align maps of 

individual floors. Their method is suitable for multiCrobot 

teams, and it is based on the assumption that certain 

architectural features of the building are common between 

different floors. A single sensor modality (laser range finder) 

is used for global localization and generation of constraints.  

This method does not perform well if certain architectural 

features are repetitive, symmetrical or disCsimilar in different 

floors. Moreover, it does not address the issue of which map 

correspond to which floor of the building, and therefore 

requires this information has to be manually given. 

Morales et.al. [15] demonstrated the use of a barometer 

for vehicle localization in outdoor woodland environments.  

Their setup consists of a van that is equipped with wheel 

encoders, a laser range finder, differential GPS receiver and 

a high precision barometric sensor. The barometer is used to 

estimate the altitude in areas where GPS cannot provide 

reliable information. Last known altitude from GPS is used 

as the reference point, and the offset is estimated using the 

barometer.  

Our method differs significantly from the aboveC

mentioned methods; both in the way the maps are generated 

and in the way they are represented. Instead of only 

providing a correct alignment of the floors, this method also 

generates a globally consistent representation of the 

building; which directly correspond to elevations of 

individual floors, and therefore the actual layout. 

Furthermore, it does not depend on architectural similarities 

between different floors, as 2D SLAM is actually sufficient 

for alignment. On the other hand, our method currently 

supports single robot systems due to the fact that maps of 

individual floors are segmented from a continuous, global 

dataset.  

III. METHOD 

 We combine a laser range sensor and a barometric 

pressure sensor to align individual maps, detect transitions, 

and represent floor elevations in a global coordinate frame. 

Using a laser range finder, we generate 2DCmaps of floors 

and estimate robot path during exploration, and floor 

transitions are detected using a barometric pressure sensor.  

 

A. Barometric Pressure vs Altitude 

Barometric pressure (or atmospheric pressure) is defined 

as the force per unit area exerted against by the weight of air 

above that surface in the earth’s atmosphere [16]. Therefore, 

the change in pressure over an infinitesmall change in 

altitude should be proportional to the gravitational force 

exerted by the mass of the air in that infinitesmall layer. This 

relation can be expressed as: 

 

dP

dz
= −ρg           (1) 

where P is pressure, z is altitude, ρ is density of air and g 

is the gravity. The negative sign denotes the decrease in 

pressure with increasing altitude. 

Furthermore, ideal gas law states 

 

P=ρ  R T           (2) 

where R is the Boltzmann constant and T is the 

temperature. 

Therefore, using (2) and (3), we can write  

 

dP

dz
= −

g

RT
P         (3) 

According to the International Standard Atmosphere 

Model formulated by International Civil Aviation 

organization [17], zero altitude is measured from mean sea 

level as 

 

P
0
=101325 Pa         (4) 

Therefore, for constant gravitational acceleration and 

temperature, it is proven that the altitude can be 

approximated in terms of pressure, using the first order 

integral of equation (3):  

 

z = −
RT

g
log

P

P0









         (5) 

Our method basically exploits the fact that the barometric 

pressure decreases as the robot moves to upper floors, and 

increases as it moves to lower floors. Furthermore, we 

assume that the pressure remains relatively stable and 

constant in the same floor, and the pressure difference 

between the floors is significant between adjacent floors.  

To verify these assumptions, the following experiment 

was conducted. Using a digital barometric pressure sensor, 

we recorded pressure and temperature from 8 different floors 

of a typical building. In each floor, data was recorded for the 

same amount of time (3 minutes), with refresh rate of 1 

measurement per second. (Figure 2)  

Two observations can be made from this experiment; 

during short periods (as in floor transitions), pressure 

remains relatively stable in the same floor, and the pressure 

difference is significant between floors.  

To further prove that the barometric pressure at a static 

observation point remains relatively same over short periods 
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of time, we collected temperature and pressure readings 

from a static point for 5 days (Figure 3). Barometric pressure 

varies due to atmospheric events, day>night transitions or 

geographical conditions. Yet, the variations in the 

barometric pressure happen relatively slowly, as seen in 

Figure 3. Considering the fact that moving from one floor to 

another (using elevators) takes at most a few minutes, it can 

be assumed that the barometric pressure at the respective 

floors remain the same over the period of transition.  

Using these assumptions, the following sections deal with 

the detection of floor transitions based on barometric 

pressure changes between floors. 

 

 
 
Figure 2, Absolute pressure readings from 8 different floors of a building. 

Data were recorded asynchronously. 

B. Exploration 

Our method is developed for a single robot that explores 

the multi>floor building. During exploration, three types of 

data are recorded: 

> Raw odometry from wheel encoders 

> Range readings from laser range finder 

> Pressure readings from barometric pressure sensor 

At the end of the exploration, we obtain a single dataset 

that contains time>stamped readings of above>mentioned 

data.  

 

 
 
Figure 3, Barometric pressure and temperature over 5 days at a static point. 

Atmospheric events affects the density of air, hence the barometric 

pressure. 

C. Mapping of individual floors  

Based on the state>of>the>art algorithms that address 2D 

mapping problem, we assume that sufficient solutions exist 

to generate metric gridmaps of individual floors. 

Particularly, we adopted the approach of Grisetti et.al. [18] 

that is based on Rao>Blackwellized particle filters [19], and 

made available in [20] as an open>source library. 

To mention briefly, the key idea of Rao>Blackwellized 

particle filter for SLAM is to estimate the joint posterior

p(x
1:t
,m z

1:t
,u
1:t−1)  for the map m and the path x

1:t
= x

1
,..., x

t

of the robot [19]. Using the observations (range readings) 

z
1:t
= z

1
,..., z

t
 and the odometry measurements

u
1:t−1 = u1,...,ut−1 , it is possible to estimate the joint posterior, 

by using the following factorization: 

 

p(x
1:t
,m z

1:t
,u
1:t−1) = p(m x

1:t
, z
1:t
).p(x

1:t
z
1:t
,u
1:t−1)     (6) 

Using equation (6), it is possible to first estimate the path of 

the robot p(x
1:t

z
1:t
,u
1:t−1) , and consequently build the map 

of the environment p(m x
1:t
, z
1:t
) , based on the estimated 

path.  

We use Gmapping [20] to process the dataset and to 

obtain the corrected robot path based on laser readings. At 

this point, the whole dataset is processed and it is treated as 

it is from a single floor rather than a multi>floor 

environment.  

The resulting map is based on the path of the robot, and it 

is essentially the projection of all floors onto a single plane 

(As seen in Figure 1). 

D. Map segmentation 

Map segmentation is the process of dividing the 

monolithic dataset into segments to represent individual 

floors. Our method only takes barometric pressure readings 

into account for map segmentation; and unlike the available 

methods, repetitive, symmetrical or dissimilar architectural 

features in the environment do not affect the performance. 

Segmentation is based on detecting discontinuities of the 

pressure graph (e.g Figure 4). Raw pressure readings are 

noisy time series, and for better representation, the raw data 

is smoothed using Double Exponential Smoothing [21]. The 

following two equations are associated with Double 

Exponential Smooting: 

 

St =α.yt + (1−α).(St−1
+ bt−1

)       0 ≤α ≤1

bt = γ.(St − St−1
)+ (1−γ ).bt−1

       0 ≤ γ ≤1
     (7) 

where α  and γ  are smoothing constants, y  is the raw data,  

b  is the trend of the data and S  is the smoothed data. The 

initial values for the smoothed data and the trend can be 

taken as S
1
= y

1
 and b

1
= y

2
− y

1
 [22].  

The detection of floor transitions is based on the rate of 

change of the smoothed pressure readings. Figure 4 (bottom) 
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shows the rate of change in pressure, i.e. !P = P
t
−P

t−1 . 

Using the mean (! ) and standard deviation (σ ), floor 

transitions are detected at the instants where !P > ! + 2σ . 

Detecting the segments based on the barometric pressure 

reveals when the robot travels from one floor to another. 

Using the timestamps of transitions, the whole dataset is 

divided into segments of odometry, range and pressure 

readings from individual floors. We apply SLAM on the 

segments to generate 2D maps, and we calculate the mean 

pressure for each floor.  

The resulting representation is a globally consistent multiD

floor map of the building. It can be referred as a 2.1D map, 

since the individual floors are represented as 2D metric 

maps, and the elevations of the floors are represented in 

terms of pressures.  

 

 

 
 

 

Figure 4, Barometric pressure during exploration. The robot starts its route 

at the 5
th
 floor, then moves to 6

th
, 4

th
, 3

rd
, 2

nd
 and ground floors. Raw 

pressure readings (top) are smoothed using Dual Exponential Smoothing 

(middle). The rate of change of the smoothed pressure reveals the instances 

for floor transition (bottom).  

 

IV. EVALUATION 

A. Environment 

We tested the method in a typical multiDfloor building 

using a mobile robot. The experiment took place in 

Steinman Hall of the City College of New York (Figure 5). 

The building houses several engineering departments, and it 

is mainly consisted of offices, classrooms and laboratories.  

During the experiment, the robot explored publicly 

accessible areas of the building. Office layouts and 

laboratory arrangements differ significantly between 

departments and therefore between individual floors.  

 

 

 
 

Figure 5, Steinman Hall D Grove School of Engineering, the City College of 

New York. Six floors of the building – ground floor to 6
th
 floorD are 

mapped. 

 

B. Robot platform 

The robot used in the experiment consisted of a Pioneer 

P3AT robot base, a SICKDLMS 200 laser range finder, an 

SMC1000 barometric pressure sensor and a laptop with 

Linux operating system. The pressure sensor was interfaced 

to the laptop through an Arduino microcontroller board, via 

USB.  

C. Exploration 

Experiment started at the 5
th

 floor, where the CCNY 

Robotics Lab is situated. After covering the 5
th

 floor, the 

robot traveled to 6
th

,4
th

,3
rd

,2
nd

 and 1
st
 floors of the building. 

The total length of the path the robot traveled is 

approximately 927 meters. The overall exploration, 

including transitions between floors using elevators took 

46.4 minutes, resulting in an average speed of 0.33 meters 

per second.  

D. Metric Mapping 

We applied RaoDBlackwellized particle filter to the whole 

dataset using [20]. As a result of the SLAM, the path of the 

robot and the map are estimated (Figure 1).  

Resulting map is the projection of all floors of the 

building on a plane: A superimposed representation of a 3D 

environment into a 2D map.  

The only commonly covered parts of the individual floors 

are the main aisles, where the elevators are located. When 

the robot moves from one floor to another; it observes the 

main aisles before and after entering elevators. 

Time (seconds) 
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E. Map Segmentation 

In order to segment the map obtained in the previous step, 

we use barometric pressure data that is recorded during 

exploration. Figure 4 illustrates the change of barometric 

pressure among different floors. The exploration starts at the 

5
th

 floor, where the Robotics Lab is situated. After covering 

the 5
th

 floor, robot takes the elevator to the 6
th

 floor, where 

the pressure is lower as expected. Similarly, the barometric 

pressure increases as the robot moves to lower floors.  

Transition of the robot between floors is clearly 

observable from the barometric pressure data. The elevator 

is a closed chamber, where a heating, ventilating and air 

conditioning (HVAC) unit controls the air circulation inside 

the cabin. The effect of this phenomenon can be identified as 

spikes on the graph. 

 The result of map segmentation process can be seen in 

Figure 6. Based on the discontinuities of the barometric 

pressure data; the dataset is segmented into six consecutive 

parts, and maps of six individual floors are obtained.  

 

 

 
 

Figure 6, Individual maps of floors. These maps are segmented from the 

superimposed map in Figure 1, with the help of the barometric pressure log.  

 

 

As stated previously and illustrated above, the ground 

floor is a large open space, and the rest of the floors are 

arranged differently, based on the functional units residing in 

that floor. The common area in all of the floors is the main 

aisle, where the elevators are located.  

To obtain a physically consistent representation, we 

directly use the mean barometric pressure for each floor as a 

measure of elevation. Therefore, 2D layout of the 

environment is represented as a metric XPY grid and 

computed by the SLAM; and the elevation (Z) of the each 

grid represented by mean barometric pressures that are 

directly derived from the dataset. 

F. Discussion of Results 

The results of the experiment are illustrated in Figure 6 

and Figure 7; which shows that the method is useful for 

building physically consistent maps of multiPfloor 

environments.  

 

 

 

 
 

 

 

Figure 7, Resulting multi floor map. 2D floor maps are the result of metric 

SLAM (top). Elevations of individual floors are determined from 

barometric pressure (middle). The final representation is a 2.5D –sparse 3DP 

map of the building (bottom).  Note the decreasing values of Pressure axis, 

in order to reflect the physical layout of the building.  
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The method is based on a set of very simple rules. It uses 
state7of7the7art metric mapping techniques, and exploits the 
characteristics of barometric pressure. In contrast to maps 
generated in [14], where the floor levels are hand7coded into 
the system; this method is capable of representing the correct 
order of the floors automatically. Moreover, the elevation 
differences between floors can also be revealed. From Figure 
7 (middle), it is possible to observe that the floors are not 
evenly spaced.  Larger elevation differences between the 
ground floor, the 2nd floor and the 3rd floor are consistent 
with the architecture of the building: The ceiling on the 
ground (1st) floor is significantly higher, and there is a 
mezzanine floor (2M) between the 2nd and the 3rd floors, 
which is not explored by the robot.  

Metric maps of the individual floors are simply generated 
by the 2D SLAM algorithm [20]. In general, the maps are 
consistent and aligned well with the other floors, especially 
around the main aisle, where the elevators are situated. Due 
to the shortcomings of the SLAM algorithms, slight 
misalignments are also detected, as in the map of the 2nd 
floor (Figure 6). Unlike the 4th floor and the 6th floor, a loop 
closure is not observed on the 2nd floor; and unlike the 
ground floor and the 5th floor, the environment is not rich in 
terms of features. A relatively featureless and long corridor 
without a loop closure results in poor self7localization of the 
robot, hence affects the generated floor map.  

Figure 7 reveals that the elevations of the individual floors 
are referenced to the mean barometric pressures recorded at 
the corresponding floors during exploration. While the 
relative elevation differences can be represented using mean 
barometric pressures, they cannot be represented as absolute 
elevations from mean sea level because of the varying 
barometric pressure (as seen in Figure 3).  

V. CONCLUSION AND FUTURE WORK 

In this paper, we presented a novel method for mapping of 
multi7floor buildings. It is based on laser range 
measurements to build metric maps of the environment, and 
barometric pressure measurements to detect floor transitions 
and segment the metric maps.  

 The method is tested with a real robot in a typical multi7
floor building, and the results show that the method is 
capable of generating physically consistent maps. It is 
simple, efficient, and easily applicable to the existing robot 
systems with an addition of an inexpensive digital 
barometric sensor.  

We aim to extend this framework by tracing the 
atmospheric pressure changes using stationary sensor nodes 
placed in the environment. This will allow us to maintain a 
globally referenced pressure map, and moreover enable 
mapping with multi7robot systems.  
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